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Learning-based fully automated prediction of lumbar disc degeneration 1 

progression with specified clinical parameters and preliminary validation 2 

 3 

Abstract 4 

Background 5 

Lumbar disc degeneration (LDD) may be related to aging, biomechanical and genetic factors. Despite 6 

the extensive work on understanding its etiology, there is currently no automated tool for accurate 7 

prediction of its progression.  8 

Purpose 9 

We aim to establish a novel deep learning-based pipeline to predict the progression of LDD-related 10 

findings using lumbar MRIs.  11 

Materials and Methods 12 

We utilized our dataset with MRIs acquired from 1,343 individual participants (taken at the baseline and 13 

the 5-year follow-up timepoint), and progression assessments (the Schneiderman score, disc bulging, and 14 

Pfirrmann grading) that were labelled by spine specialists with over ten years clinical experience. Our 15 

new pipeline was realized by integrating the MRI-SegFlow and the Visual Geometry Group-Medium 16 

(VGG-M) for automated disc region detection and LDD progression prediction correspondingly. The 17 

LDD progression was quantified by comparing the Schneiderman score, disc bulging and Pfirrmann 18 

grading at the baseline and at follow-up. A 5-fold cross-validation was conducted to assess the predictive 19 

performance of the new pipeline.  20 

Results 21 

Our pipeline achieved very good performances on the LDD progression prediction, with high progression 22 

prediction accuracy of the Schneiderman score (Accuracy: 90.2 ± 0.9%), disc bulging (Accuracy: 90.4% 23 

± 1.1%), and Pfirrmann grading (Accuracy: 89.9% ± 2.1%).  24 

Conclusion 25 

This is the first attempt of using deep learning to predict LDD progression on a large dataset with 5-year 26 

follow-up. Requiring no human interference, our pipeline can potentially achieve similar predictive 27 

performances in new settings with minimal efforts.  28 

 29 
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Introduction 1 

Lumbar disc degeneration (LDD) is one of the main potential causes for low back pain and is 2 

associated with reduced quality of life, work disability, potential psychological distress, and increased 3 

health-care costs [1]. Magnetic resonance imaging (MRI) of the lumbar spine is used to diagnose LDD 4 

and to guide clinical management. Assessment of LDD on MRIs often includes characterization of 5 

reduced disc signal intensity, high-intensity zones and structural abnormalities [2]. Many known 6 

parameters are associated with LDD such as increasing age and body mass index, presence of Modic 7 

changes and low pelvic incidence [3, 4]. However, there is less work on LDD progression prediction. 8 

Despite the intuitive association with aging, some contradicting evidence from a population-based cohort 9 

suggests this association is insignificant [5]. Based on twins data, there may be genetic heritability for 10 

longitudinal changes in disc signal intensity and disc bulging [6]. Disc bulging may not progress and 11 

may even resolve in some cases [7, 8]. There are no learning-based studies to predict LDD progression. 12 

Machine learning for utilizing longitudinal big data to establish predictive models can be a potential 13 

solution [9-11]. Convolutional Neural Network (CNN) has achieved a remarkable performance in MRI 14 

analysis tasks including pathology classification [12-15], landmark detection [16, 17], and segmentation 15 

[18-21]. In comparison with the conventional machine learning approach, such as support vector machine 16 

(SVM) [22, 23], CNN does not rely on the rule-based shallow image features that are often perceptible 17 

for humans. By performing a series of convolution operations, CNN models can extract the hierarchical 18 

features automatically from the input image. Since the feature extraction is mathematical and does not 19 

always conform to human visual patterns [24, 25], CNN can utilize both perceptible and non-perceptible 20 

image features.  21 

There is no previous work using CNNs to predict longitudinal changes in LDD. The major obstacle 22 

for such studies is the lack of labelled MRI datasets with follow-up for training the model. In this study, 23 

we aim to develop and validate a deep learning pipeline for the 5-year progression prediction of LDD. 24 

The objectives include 1) mapping the data of a large MRI dataset with labels and follow-up; 2) 25 

developing a pipeline for LDD progression prediction; 3) testing the progression prediction accuracy. 26 

 27 

Materials and Methods 28 

Dataset 29 

The dataset was constructed from the Hong Kong Disc Degeneration Population-Based Cohort of 30 

Southern Chinese participants [3]. Written consent was obtained from all subjects and ethics was 31 

approved by the local institutional review board. Subjects who were 18 years or older were recruited by 32 

open invitation using newspaper advertisements, posters, and e-mails. Subjects were interviewed for 33 

demographic data and underwent MRIs examinations. Participants with prior surgical treatment of the 34 

spine, spinal tumors, and marked spinal deformities were excluded from the cohort. The dataset consisted 35 

of 1343 participants’ sagittal lumbar T2-weighted MRIs at baseline and follow-up timepoint (in total 36 

2686 sets of MRIs). The follow-up images were obtained at 5-year (within 6 months deviation) from the 37 

initial image. The images were obtained from three different institutions with the same MRI protocol, 38 

which demonstrated the diversity of our dataset. All patients have been previously reported [3]. The prior 39 

article dealt with the association between LDD and body weight in adult, whereas in this study we were 40 

predicting the long-term progression of the LDD using MR and deep learning technologies. 41 

 42 

MRI Protocol 43 

All subjects included in this study underwent 1.5T HD MRI with sagittal imaging at L1-S1. The 44 
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detailed MRI protocol has been described in the previous study [26], but briefly participants were 1 

oriented in supine position. For T2-weighted sagittal scans, the field of view was 28cm28cm, slice 2 

thickness was 5mm, slice spacing was 1mm, and imaging matrix was 448336. The repetition time for 3 

T2-weighted MRI 3320ms, and the echo time was 85ms.  4 

 5 

MRI parameters 6 

Three MRI phenotypes (Figure 1) of Schneiderman score, disc bulging, and Pfirrmann grading were 7 

examined. For Schneiderman’s score [27], the disc signal intensity was divided into 4 grades: grade 0 8 

represents normal disc height and signal intensity; grade 1 represents speckled pattern or heterogenous 9 

decreased signal intensity; grade 2 represents diffuse loss of signal; and grade 3 indicates a signal void. 10 

Disc bulging was subclassified as: 0 = no disc herniation; 1 = posterior disc bulging (disc displaced 11 

beyond a virtual line connecting the posterior edges of two adjacent vertebrae); 2 = disc extrusion 12 

(distance between the edge of the protruded disc into the spinal canal was greater than the distance 13 

between edges of the base of the disc); 3 = disc sequestration [2]. Disc degeneration was also evaluated 14 

using the Pfirrmann grading [28] which assessed disc signal intensity by 5 grades: 1 = homogeneous 15 

bright white disc; 2 = inhomogeneous white disc and/or horizontal bands; 3 = inhomogeneous grey disc; 16 

4 = inhomogeneous grey to black disc; 5 = inhomogeneous black disc with probable disc space collapse. 17 

All measurements were performed by two spine specialists with over ten years clinical experience, 18 

blinded to the participant’s demographics. Any deviation in gradings was discussed and a final consensus 19 

score was determined. For each grading, progression was labelled when the follow-up grade was more 20 

than the initial baseline score.  21 

 22 

Prediction Pipeline 23 

The pipeline of our learning-based progression prediction system is summarized in Figure 2. First, 24 

the region of each disc was detected and extracted from the lumbar MRI, based on the pixel-wise 25 

vertebral masks produced by the MRI-SegFlow [29], a novel unsupervised vertebrae segmentation 26 

method published by our group. The disc region was defined as the 1.5𝑤 × 2𝑤 × 𝑛 cuboid between 27 

two adjacent vertebrae, where 𝑤  represents the average width of vertebrae in the MRI, and 𝑛 28 

represents the slice number of the MRI series. It was followed by resizing the disc regions with different 29 

shapes to a standard size and input to a deep learning model using the basic architecture of a CNN model 30 

by adopting the framework of Visual Geometry Group-Medium (VGG-M) [30], which has relatively 31 

deep network architecture, extracting highly abstract image features. The encoder of the model was 32 

trained to extract the features from the disc region. With these features, the classifier produced the 33 

probability for each follow-up pathology grade, and the grade with the highest probability was defined 34 

as the grade prediction. Referring to the baseline grade, the state of disc pathology progression was 35 

determined. Since one model only handled one specific pathology, three models were built for the 36 

prediction of Schneiderman score, bulging, and Pfirrmann grading, respectively. The detailed network 37 

architecture, training strategy, and implementation details are stated in the Appendix. 38 

 39 

Evaluation Metrics 40 

The performance of our pipeline was evaluated by the Accuracy (𝐴𝑐𝑐), Precision (𝑃𝑟𝑒), Recall 41 

(𝑅𝑒𝑐) and 𝐹1 of progression prediction for each pathology. They were defined as follows: 42 

𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 43 



4 

 

𝑃𝑟𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 1 

𝑅𝑒𝑐 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 2 

𝐹1 =  
2 × 𝑃𝑟𝑒 × 𝑅𝑒𝑐

𝑃𝑟𝑒 + 𝑅𝑒𝑐
 3 

where TP represented the number of true positive samples which were the samples labeled as progression 4 

and predicted correctly by the deep learning method. The FN represented the number of false negative 5 

samples which were also progression samples but predicted incorrectly. The TN and FP represented the 6 

numbers of true negative and false positive samples, which were the non-progression samples predicted 7 

correctly and incorrectly respectively. The 𝐴𝑐𝑐 represented the overall performance of our method in 8 

the progression prediction task, while the 𝑃𝑟𝑒 , 𝑅𝑒𝑐 , and 𝐹1  illustrated our method’s ability on 9 

recognition of progression samples. 10 

 11 

 12 

Results 13 

The study subjects (39% male and 61% female) had a mean age of 44.8 years (SD 9.7) with the major 14 

participants older than 45 years (57.1%), weight of 61.1kg (SD 11.0), height of 1.62m (SD 0.09) and 15 

body mass index of 23.1 kg/m2 (SD 3.5). The detailed demographics of dataset is presented in Table 1. 16 

The summary of the label and progression distribution are shown in Table 2. We found that the 17 

distributions were imbalanced. The percentages of the cases with LDD progression were less than those 18 

with no progression. The baseline grade distribution is presented in Table 3, which shows that the discs 19 

with the same follow-up grade tend to have similar baseline grades. 20 

Our new progression prediction pipeline was validated according to the implementation details 21 

presented in the Appendix. The percentages of the TP, TN, FP and FN samples were calculated first 22 

(Table 4). Then the evaluation metrics, including Accuracy, Precision, Recall and F1 were derived (Table 23 

4). Our method achieved remarkable overall accuracy in all predictions of the three LDD clinical 24 

parameters (Schneiderman score: 90.2%, Disc Bulging: 90.4%, Pfirrmann grading: 89.9%). For the 25 

Schneiderman score, the Precision, Recall and F1 were 89.6%, 96.0% and 92.7% respectively, which 26 

illustrated the superior ability of our method on the identification of progression samples. However, due 27 

to the imbalanced sample distribution, our method only achieved suboptimal performance on the 28 

progression identification for Disc Bulging and Pfirrmann grading (the Precision, Recall and F1 were 29 

80.2%, 76.5% and 78.3% for Disc Bulging, and 64.9%, 60.4% and 62.6% for Pfirrmann grading).  30 

 31 

 32 

Discussion 33 

We developed the first deep learning embedded pipeline for predicting LDD progression, which 34 

integrated the published MRI-SegFlow and the basic network architecture of VGG-M. Compared with 35 

other machine learning approaches for MRI analysis, our method can extract the highly abstract features 36 

from the raw MRIs automatically without relying on any rule-based feature extraction. Thus, it can learn 37 

the information that is non-perceptible for humans by looking at MRIs. Since the prediction process is 38 

fully mathematical without any subjective or random factors, the results from our pipeline is consistent, 39 

providing accurate detection of LDD progression. Our findings lay the foundations for early detection of 40 
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progressive diseases whereby preventive measures and interventions may be implemented to potentially 1 

reduce the number of surgeries.  2 

The heterogenicity of either the progression group or the non-progression group is large. Each group 3 

may have different pathological grades in Schneiderman score, disc bulging and Pfirrmann grading. The 4 

difficulties in learning whether the pathology will progress or not based on different baselines and follow-5 

up pathologies is a challenging task for a deep learning method [31]. It can be observed (Table 3) that 6 

the discs with the same follow-up pathology grading tend to have similar baseline grades. For instance, 7 

for the disc with follow-up Pfirrmann grade of 4, 74.9% of them had baseline grade of 4, 20.3% of them 8 

had baseline grade of 3, and 4.0% of them progressed from grade 2. The discs with different follow-up 9 

grades usually have a different distribution of baseline grades. Additionally, 85.1% of the discs with 10 

follow-up Schneiderman score of 1 progressed from grade 0, while only 23.6% of the discs with follow-11 

up score of 2 had baseline score of 0. Therefore, instead of directly predicting whether the pathology will 12 

progress or not, we predicted the follow-up stage of the pathology to reduce the heterogenicity of the 13 

groups, and then computed any progression or no progression based on the predicted pathology grading.  14 

It must be acknowledged that the deep learning model is data driven [9-11], which means the 15 

performance of the model is depended on the label distribution of the training dataset. Our pipeline 16 

achieved remarkable 𝑃𝑟𝑒, 𝑅𝑒𝑐 and 𝐹1 in the progression prediction of the Schneiderman score, which 17 

illustrated the excellent ability of this pipeline on the identification of progression samples. It is mainly 18 

because the distribution of progression and non-progression samples is balanced for the Schneiderman 19 

score. However, for disc bulging and Pfirrmann grading, the sample distributions are highly imbalanced. 20 

For disc bulging (Table 2), 76.6% samples did not progress, and for Pfirrmann grading 85.9% samples 21 

did not progress. A model trained with this imbalanced data will tend to distinguish an unseen sample as 22 

non-progressive. Therefore, our model achieved sub-optimal performance in the progression detection 23 

of these two pathologies in comparison with Schneiderman score. With an increase in the data volume, 24 

especially with the number of progression samples, our method can produce improved performance in 25 

the prediction of disc bulging and Pfirrmann grading. As for the Schneiderman score, our method already 26 

provides a reliable progression prediction. 27 

We adopted several data-level and algorithm-level methods to deal with the unbalanced label 28 

distribution problem, such as oversampling, undersampling, variable loss weight [32] and SMOTE [33]. 29 

However, there is no significant improvement and even reduction in the model performance. This may 30 

be because the small number of progression samples cannot fully represent their patterns and lack a clear 31 

data structure, thus the model is not able to learn an optimal decision boundary for the identification of 32 

the progression samples [32]. Despite this, our dataset is based on a population cohort and with a large 33 

sample size and five-year longitudinal follow-up. This dataset should already reflect the true pathology 34 

progression distribution. Data skewed towards non-progression in our learned model may reflect the real 35 

situation and true progression probability.  36 

There are still some limitations to our pathology progression prediction method. Since our method 37 

is based on CNN, it requires a large number of labelled training data, and has high dataset sensitivity. 38 

This means that if the method is tested on an MRI with different image quality from the training data, 39 

the performance will be reduced. To accommodate a new image quality, a well-trained CNN model still 40 

requires several hundreds of labelled follow-up MRI for finetuning. Also, this model was developed 41 

using a dataset based on southern Chinese individuals. Whether this is applicable in other ethnicities 42 

require further replication. We will further validate our method in other populations. Besides, the 43 

prediction process of our method is only based on the MRI findings, and clinical information such as age, 44 
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sex and weight were not involved. These additional factors may be required to link the imaging findings 1 

to real clinical implications. We will continue to enrich our follow-up MRI dataset to improve the 2 

performance of our CNN model. Prospective testing at other external institutes will be conducted to 3 

validate the robustness of our method, and a similar performance will likely be achieved due to the 4 

diversity of our dataset. In addition, the clinical information will be merged into the prediction process, 5 

and the network architecture will be further modified to inhibit the dataset sensitivity. Longer term 6 

follow-up data is also useful as the progression potential may be higher with more subjects experiencing 7 

LDD progression. 8 

 9 

 10 

Conclusion 11 

We have developed and tested a new pipeline for predicting LDD progression. This is the first deep 12 

learning embedded pipeline to be used in the task of pathology prediction. A large labelled MRI dataset 13 

with follow-up was utilized for the training and testing of our method. The validation result shows that 14 

our method achieved remarkable accuracy in the progression prediction of the Schneiderman score, disc 15 

bulging, and Pfirrmann grading. Our method has shown superior ability on the identification of 16 

progression samples for the Schneiderman score. With increased training data, the performance of our 17 

method can be further improved, and it has significant potential for clinical implementation. Future study 18 

will be conducted for interpretation of the model, identifying image features and related underlying 19 

pathology.  20 
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Table 1: Demographics of Dataset 1 

Age Group (years) 18 to 40 40 to 50 over 50 

Subject Number 412 512 419 

Progression 

Percentage 

Schneiderman score 56.4% 67.4% 69.1% 

Disc Bulging 13.7% 24.7% 31.5% 

Pfirrmann grading 10.3% 14.5% 17.5% 

Gender Male Female 

Subject Number 524 819 

BMI (kg/m2) under 18.5 18.5 to 25.0 over 25.0 

Subject Number 100 920 323 

 2 

Table 2: Label distribution 3 

Schneiderman score 

Baseline Grade 0 1 2 3 

Percentage 58.6% 16.1% 18.5% 6.8% 

Follow-up Grade 0 1 2 3 

Percentage 6.4% 51.0% 39.2% 3.4% 

Progression State Progression Non-progression 

Percentage 64.6% 35.4% 

Disc Bulging 

Baseline Grade 0 1 2 3 

Percentage 80.2% 19.0% 0.8% 0.0% 

Follow-up Grade 0 1 2 3 

Percentage 60.3% 38.0% 1.5% 0.2% 

Progression State Progression Non-progression 

Percentage 23.4% 76.6% 

Pfirrmann grading 

Baseline Grade 1 2 3 4 5 

Percentage 0.2% 24.2% 44.8% 30.1% 0.7% 

Follow-up Grade 1 2 3 4 5 

Percentage 0.8% 35.0% 32.9% 29.4% 1.9% 

Progression State Progression Non-progression 

Percentage 14.1% 85.9% 

  4 
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Table 3: Baseline grade distribution of samples with different follow-up grades 1 

Schneiderman score 

Follow-up Grade: 0 

Baseline Grade 0 1 2 3 

Percentage 92.8% 4.2% 2.6% 0.4% 

Follow-up Grade: 1 

Baseline Grade 0 1 2 3 

Percentage 85.1% 9.4% 4.6% 0.9% 

Follow-up Grade: 2 

Baseline Grade 0 1 2 3 

Percentage 23.6% 27.8% 38.6% 10.0% 

Follow-up Grade: 3 

Baseline Grade 0 1 2 3 

Percentage 2.2% 3.5% 25.3% 69.0% 

Disc Bulging 

Follow-up Grade: 0 

Baseline Grade 0 1 2 3 

Percentage 95.8% 4.2% 0.0% 0.0% 

Follow-up Grade: 1 

Baseline Grade 0 1 2 3 

Percentage 57.4% 41.1% 1.5% 0.0% 

Follow-up Grade: 2 

Baseline Grade 0 1 2 3 

Percentage 39.1% 54.5% 5.5% 0.9% 

Follow-up Grade: 3 

Baseline Grade 0 1 2 3 

Percentage 10% 50% 40% 0.0% 

Pfirrmann grading 

Follow-up Grade: 1 

Baseline Grade 1 2 3 4 5 

Percentage 1.9% 87.0% 11.1% 0.0% 0.0% 

Follow-up Grade: 2 

Baseline Grade 1 2 3 4 5 

Percentage 0.5% 48.3% 49.3% 1.9% 0.0% 

Follow-up Grade: 3 

Baseline Grade 1 2 3 4 5 

Percentage 0.0% 16.3% 64.9% 18.8% 0.0% 

Follow-up Grade: 4 

Baseline Grade 1 2 3 4 5 

Percentage 0.0% 4.0% 20.3% 74.9% 0.8% 

Follow-up Grade: 5 

Baseline Grade 1 2 3 4 5 

Percentage 0.0% 0.8% 3.8% 73.1% 22.3% 
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Table 4: Sensitivity and specificity of the prediction pipeline with the evaluation matrix of 1 

prediction capabilities 2 

Schneiderman score 

Type TP TN FP FN 

Percentage 62.0% ± 2.6% 28.2% ± 3.9% 7.2% ± 1.0% 2.6% ± 1.0% 

Evaluation 

Matrix 

Accuracy Precision Recall 𝐹1 

90.2% ± 0.9% 89.6% ± 1.1% 96.0% ± 1.3% 92.7% ± 1.3% 

Disc Bulging 

Type TP TN FP FN 

Percentage 18.0% ± 3.5% 72.4% ± 2.8% 4.2% ± 0.6% 5.4% ± 0.2% 

Evaluation 

Matrix 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1 

90.4% ± 1.1% 80.2% ± 4.3% 76.5% ± 3.5% 78.3% ± 4.2% 

Pfirrmann grading 

Type TP TN FP FN 

Percentage 8.7% ± 1.4% 81.2% ± 3.8% 4.7% ± 1.1% 5.4% ± 1.5% 

Evaluation 

Matrix 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1 

89.9% ± 2.1% 64.9% ± 3.7% 60.4% ± 3.4% 62.6% ± 3.5% 

 3 

  4 
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 1 

Figure 1: An example of T2-weighted sagittal MRI of the L1-S1 discs. L1-2 is described as 2 

Schneiderman 1, with no disc herniation and Pfirrmann 2. L2-3 is described as Schneiderman 1, with no 3 

disc herniation and Pfirrmann 2. L3-4 is described as Schneiderman 1, with no disc herniation and 4 

Pfirrmann 3. L4-5 is described as Schneiderman 3, with disc bulging and Pfirrmann 5. L5-S1 is described 5 

as Schneiderman 2, with disc bulging, and Pfirrmann 4. 6 

 7 
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 1 

Figure 2: The pipeline of our pathology progression prediction method. MRI-SegFlow was used for 2 

the disc region detection using the protocol described in our recent published in prior to the VGG-M. 3 

The follow-up grade could be directly predicted from this pipeline. In comparison with the baseline grade, 4 

whether the pathology would progress was predicted. 5 

 6 


